AFM
Variation

Name	D : 1
Date	Period

DIRECT VARIATION

Recall that direct variation is a <u>linear</u> function of the form y = KX, where k is the nonzero constant of variation.

For each function, determine whether y varies directly with x. If so, find the constant of variation and write the equation.

1.

<u> </u>	11 -1	1 = 2	<u>y - 9</u>	
	1	1	0 6	No
x	1	2	3	· NIA

2.

	•		9		4
x	-1	1	3 .	1/2	3
У	-3	3	9 🐪		S
				Yes	

In each exercise, y varies directly with x. Find the missing value.

3. If
$$y = 3$$
 when $x = 2$, find x when $y = 5$.
 $y = K \times 0$ $K = \frac{3}{2}$ 2 $Y = \frac{3}{2} \times 3$ $2 \cdot 5 = \frac{3}{2} \times 3$ $3 \cdot 5 =$

2. $-4 = K(\frac{1}{2}) \cdot 2$ 5. If y = -14 when x = -7, find x when y = 22. -14 = K(-7) K = 2 $y = 2 \times 2$ -7 = -7 $22 = 2 \times 2$ $\times = 11$

$$-14 = k(-7)$$

$$y = 2x$$

22 = 2x

VERSE VARIATION
$$k = \frac{k}{x}$$
 or $xy = k$, where $k \ne 0$.

Suppose that x and y vary inversely. Write a function that models each inverse variation.

6.
$$(3,-5)$$
 $y = \frac{k}{x}$ ① $k = -15$
3. $-5 = \frac{k}{x}$ ② $y = -\frac{15}{x}$

7. (0.3, 1.4)
$$y = \frac{k}{x}$$

$$y = \frac{28}{X}$$

Explain why the table below shows an inverse variation.

9.

	Χí	1=K	
X	0.2	0.6	1.2
У	12	4	2

$$K = 2.4$$

Combines direct and inverse variations in more complex relationships

· ,	
Combined Variation	Equations Form
y varies directly with the square of x	y= K· x2
y varies inversely with the cube of x	4= <u>K</u>
z varies jointly with x and y Like direct	Z=K·X·Y
z varies jointly with x and y and inversely with w	Z= K·x·y
z varies directly with x and inversely with the	7 - K·X
product of w and y	Z - W.Y

Write the function that models each relationship. Find z when x = 4 and y = 9.

10. z varies directly with x and inversely with y. When x=6 and y=2, z=15.

15=3K

2 $Z=\frac{5x}{y}$

$$15 = \frac{Kx}{y}$$

$$2 = \frac{5x}{4}$$

$$3 Z = \frac{5(4)}{9} = \frac{20}{9}$$

11. z varies jointly with x and y. When x = 2 and y = 3, z = 60.

12. z varies directly with the square of x and inversely with y. When x = 2 and y = 4, z = 3.

$$Z = \frac{16}{3}$$

13. z varies inversely with the product of x and y. When x = 2 and y = 4, z = 0.5.

$$Z = \frac{K}{X \cdot Y}$$

$$Z = \frac{4}{(4)(9)}$$