The Norm<u>al Dist</u>ribution

The Normal Distribution

The Area Under the Curve

The area under the curve represents the propability of all possible outcomes. The total area under the curve is therefore equal to one($\sum O 0\%$)

We can work out the percentage of data that lie within a given range of values using:

- 1) The Empirical Rule

2) a z-table >> calculator

3) a statistical software package

Z-Scores

- A numerical value that tells you how far a value (x) is from the mean. It measures distance in terms of standard deviation.
- For example, a z-score of 2 means that the value (x) is \cancel{x} standard deviations above the mean.
- Z-scores are used to calculate these percentages.
- A z-score (z) is calculated using:

$$Z = \frac{140 - 170}{20} = -\frac{30}{20} = -\frac{3}{2}$$
$$Z = -1.5$$

the score of 140 is 1.5 standard deviations below the mean.

Real World Examples

Data collected on many natural phenomena, such as <u>Nelght</u> and <u>welght</u> of people, have an approximate normal distribution. These data are typically influenced by many factors and no single factor

overpowers the others.

$$z = \frac{x-\mu}{\sigma}$$