The Normal Distribution

If you take a large sample of
What is it? measurements from a con 1 UQOUS $r \underline{a} n d t m v a r \perp a \underline{b} L \underline{e}$ in a population, a histogram of this data will look be $1 \perp$ shaped.

The probability distribution curve for these data can be approximated using a formula for the normal distribution.

Two pieces of information are required by the formula: the pop $\underline{\sim} \leq \underline{u} \pm \perp \underline{2}$ mean and the $p \propto q \underline{u} \perp \underline{a} \perp \perp \underline{Q}$ standard deviation.

Notation

$\boldsymbol{\mu}$ Population mean
σ Population $S t a n d a r d$ deviatLOA
\bar{x} Sample mean
s Sample Sta $\square d$ a cd devta土ıon

Empirical Rule

(68-95-99.7 Rule)

Most data is near the middle and there is less data as you move away from the middle towards the tail
$\underline{6} 8 \%$ of the data are within 1 standard deviation of the mean 95% of the data are within 2 standard deviations of the mean 99.7% of the data are within 3 standard deviations of the mean

The Curve

Symme $\pm \angle \perp C$ about the mean
The shape is determined by two
pargmeters
$\rightarrow \boldsymbol{\mu}$ - where the middle is
$\rightarrow \boldsymbol{\sigma}$ - how wide and tall it is
We often don't know these p arameters so we have to estimate them using \bar{X} and S, ideally from a sample >30

The Normal Distribution

The Area Under the Curve

The area under the curve represents the probab \perp Lity of all possible outcomes. The total area under the curve is therefore equal to one $(\underline{O} \underline{O} \%)$

We can work out the percentage of data that lie within a given range of values using:

1) The Empirical Rule
2) az-table \rightarrow calculator
3) a statistical software package

Practice

On a standardized exam, the scores are normally distributed with a mean of 170 and a standard deviation of 20. Find the z-score of a person who scored 140 on the exam.

$$
\begin{aligned}
& z=\frac{140-170}{20}=\frac{-30}{20}=-\frac{3}{2} \\
& z=-1.5
\end{aligned}
$$

the scove of 140 is 1.5 standard devlations bel ow the mean

Z-Scores

- A numerical value that tells you how far a value (x) is from the mean. It measures distance in terms of standard deviation.
- For example, a z-score of 2 means that the value (x) is 2 standard deviations above the mean.
- Z-scores are used to calculate these percentages.
- A z-score (z) is calculated using:

$$
z=\frac{x-\mu}{\sigma}
$$

Real World Examples

Data collected on many
natural phenomena, such as
$b e l g h t$ and $W e \perp g h t$ of people, have an approximate normal distribution.

These data are typically influenced by many factors and no single factor overpowers the others.

